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ABSTRACT: In this paper,we investigate the application of the subspace system identification (SSI) method (e.g. 

N4SID) to the MIMO frequency-selective fading channel estimation problem. The FIR constraint on the MIMO 

channel model is suggested to be relieved to draw benefit from possible parsimonious parametrization of the MIMO 

channel when subchannels become correlated. Also, the criterion for training sequence selection for SSIbased MIMO 

channel estimation is analyzed. Considering that the formalism of optimal input design is inappropriate for training 

sequence solution, we suggest still to use the conventional white and spatially uncorrelated sequences for SSI-based 

(non-FIR) MIMO channel estimation, even if they might be suboptimal. A modification of the SSI methods and a 

semi-blind approach are proposed to address the issue that only non-contiguous block-wise training sequences are 

available in practical mobile communication systems. 
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INTRODUCTION 

 

 Digital communication using multiple transmit and receive antennas has been one of the most important technical 

developments in modern communications. In a rich scattering environment, MIMO systems offer significant capacity gain at no 

cost of extra spectrum (Foschini and Gans, 1998). So far, most of the proposed MIMO transmission schemes assume channel  

state information (CSI) is known at the receiver. Therefore, the channel model needs to be identified at the receiver end. The 

most commonly used model for frequency-selective fading channels is a finite impulse response (FIR) model. FIR models for 

MIMO frequency-selective fading channels can be very non parsimonious  since the number of parameters (tap gains) to be 

estimated in a FIR MIMO model increases  rapidly with the number of transmit and receive antennas. For a FIR MIMO model 

with m transmit antennas and p receive antennas, a total number of m× p×L parameters have to be estimated, where L is the 

lengthof  the subchannels assuming all the subchannels have equal length. The FIR Model for a MIMO channel is not reducible 

when the subchannels are assumed to be independent, which can be justified in cases for which antennas are separated from each 

other by some multiple (e.g. 1/4) of the wavelength in both transmitting and receiving ends. However, when a large number of 

antennas are packed into a limited volume of space, the subchannels become correlated with each other (Chiurtu , 2001; Shiu , 

2000). Hence the FIR model might be reduced to a more parsimonious state-space model. 

 Compared to the channel estimation methods based  on FIR models of MIMO wireless channels, subspace system 

identification (SSI) methods (Van Overschee and De Moor, 1996; Verhaegen, 1994; Viberg, 1995), which are based on state-

space modelling of the channel, could allow more parsimonious description of the MIMO channel or channel inverse if the 

subchannels share commonality to some extent. SSI algorithms identify the state-space model in a straightforward way and are 

numerically robust because they are based on computational tools such as singular value decomposition (SVD) and QR 

factorization. For MIMO systems with a relatively large number of transmit and receive antennas, the number of parameters to 

be estimated in the SSI method could be much less than that in methods based on FIR MIMO model. For time-varying single-

input single-output (SISO) wireless channels, training sequence based methods have been widely used to estimate the channel 

explicitly or implicitly. A pre-selected sequence, known to both the transmitter and the receiver ahead of time, is transmitted 
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through the channel and is captured by the receiver, where it is applied to adjust the adaptive equalizer in accordance with some 

optimization criterion, e.g. LMS algorithm. Other than trainingbased  approaches, blind channel estimation has recently emerged 

as a promising technique for channel equalization because no training sequence is needed for this type of approaches (Tong , 

1991). Instead, the knowledge is used that the transmitted symbols are distributed in a known way over a finite alphabet of fixed 

characters. However, most blind estimation methods suffer from convergence problem and have not found wide application in 

mobile communication with rapidly varying channels. This paper focuses on the discussion on the application of subspace system 

identification methods to the training-based MIMO channel estimation problem. In system identification terms, the presence of 

a training signal corresponds toknowledge of the input signal to the system (here the  channel) being identified. For broadband 

FIR MIMO channel with subchannels being independent of each other, the optimal training sequences that achieve the minimum 

mean square error (MMSE) of channel estimation have an impulselike auto-correlation sequence and zero cross correlation 

(Fragouli , 2003). However, for a non- FIR MIMO channel with correlated subchannels, it is not clear that white and uncorrelated 

sequences are "optimal" for channel identification. In fact, the "optimal" choice should depend on the knowledge of the specific 

channel (Goodwin and Payne, 1977), which implies that the training sequence should adapt to the change of the channel. 

Considering the high complexity of designing "optimal" training sequence for non-FIR MIMO channel and the fact that training 

sequences in wireless communication systems are normally selected ahead of time and stay fixed during the transmission, we 

believe white and uncorrelated training sequences are still the best option. Another issue with the SSI-based MIMO channel 

estimation is that the training sequences may not be contiguous in the data stream in practical mobile communication systems. 

Instead, they appear as the  mid-amble of a frame of data. More specifically, in the Groupe Speciale Mobile (GSM) system, a 

26-bit long segment in the middle of each 156-bit frame is allocated for the insertion of the training sequence (Steele, 1992). A 

semi-blind approach can be efficient since it utilizes both the known data (training sequences) and unknown data (information 

sequences) to estimate the channel. Also, since the traditional SSI methods assume the availability of a contiguous input-output 

data stream, they need to be modified to suit the situation of MIMO channel estimation. It will be shown that when the length of 

the training sequence, Nt , is sufficiently large compared to the order or the McMillan degree of the model of the MIMO channel, 

the modified non-contiguous-data approach retains similar performance to the original contiguousdata approach. 

 The remainder of the paper is organized as follows. Section 2 overviews subspace system identification with application to 

MIMO channel estimation. The difference between subspace system identification methods and signal subspace methods that 

has been used in blind channel estimation is explained. Section 3 discusses the design of training sequences for subspace 

identification of MIMO frequency-selective fading channels. The formulation of SSI methods for non-contiguous data streams 

is discussed in Section 4. The conclusion follows in Section 5. 

 

2. SUBSPACE SYSTEM IDENTIFICATION AND MIMO CHANNEL ESTIMATION 

2.1 Channel Model 

 Single-input single-output (SISO) frequency-selective fading channels have been commonly modelled as tapped delay lines 

to characterize the multipath fading phenomenon. For a SISO FIR channel, the number of channel parameters to be estimated is 

equal to the length of the impulse response L. This parametrization could be very non-parsimonious for a broadband MIMO 

channel, which would contain m× p×L unknown parameters assuming all the subchannels have equal length L, where m and p 

are the number of transmit and receive antennas, respectively. In the case where the subchannels in the MIMO system share 

commonality to some extent, a statespace model may be able to provide a more parsimonious parametrization of the frequency-

selective fading channel than FIR model. Consider a system that employs m transmit and p receive antennas.  

 

Xk+1=Axk+Buk 

Yk=Cxk+Duk+nk  (1) 

 

 where uk is a m×1 vector that represents the channel input (symbols sent by the m transmit antennas) at time k. yk is a p×1 

vector that represents the channel output at time k, i.e. the received symbols by the p receive antennas. xk is the q channel state 

vector where q is the order or the McMillan degree of the MIMO system. Additive white Gaussian noise is assumed and is 

represented by nk. A, B, C and D are the system matrices in the state-variable description of the MIMO channel with obvious 

dimensions. If the impulse responses of the subchannels are correlated with each other to some extent, the system order q could 

be much less than the length of the impulse response of a single subchannel. Therefore the statevariable methods could allow a 

dramatic reduction in the number of parameters to be estimated for the MIMO equalizer compared to the case with a MIMO FIR 

model. For example, a 4×4 10-tap FIR channel model without other structure would require 160 parameters to be estimated. A 

state-variable realization with q poles would require no more than 169 parameters for q = 9 and 81 parameters for q = 5. 

 

2.2 Subspace System Identification 

 Subspace system identification (SSI) refers to a class of recent algorithms, such as N4SID and MOESP, which apply input-

output  system identification methods to determine directly a state-space realization of system. The key idea of SSI methods is 



Glob. J. Mul. App. Sci., 3 (2): 55-60, 2015 

57 
 

to estimate the extended observability matrix through projection of future input-output data onto past input-output data. Then 

the system matrices A, B, C and D are computed based on the estimated observability matrix and singular value decomposition 

(SVD) algorithm. Refer to (Van Overschee and De Moor, 1996; Ljung, 1999) for details about SSI algorithms. Based on the 

channel model given in (1), SSI methods require the input to satisfy the following requirements for the channel to be identifiable. 

(1) The input uk is uncorrelated with the additive Gaussian white noise nk. 

(2) The input uk is persistently exciting of order of at least 2 times the maximum order of the channel. 

(3) The symbols in the input sequence are contiguous and for consistency the number of input goes to infinity. 

 The first assumption is usually satisfied for wireless communication systems. The second one requires the training sequence 

to maintain a certain structure. Also, notice that the third assumption places limitation on the application of SSI methods to 

channel estimation in wireless communication systems where the training sequences are usually not contiguous in time. Instead, 

they lie in the mid-amble of a frame and are separated by data symbols, the knowledge of which is not shared between transmitter 

and receiver. This fact may suggest the use of recursive version of SSI methods. The issue of training sequence design for MIMO 

channel estimation will be addressed in detail later in Section 3 and 4. 

 

2.3 Subspace-based MIMO Channel Estimation 

 We should point out that despite the similar name, the SSI-based methods differ from "Signal Subspace Methods" for blind 

MIMO channel estimation which seek to separate the noise and signal subspaces using singular value decomposition on the 

covariance matrix of the channel output (Moulines , 1995). In (Moulines , 1995), channel structure is constrained to be FIR with 

known input covariance. Moreover, the assumption that the channel matrix is block Toeplitz (FIR) is explored to estimate the 

channel up to a scale factor through singular value decomposition of the channel output covariance matrix. As for SSIbased 

methods, since the FIR constraint on the channel is relieved to draw benefit from possible parsimonious parametrization of the 

channel, the channel estimate cannot be obtained directly by applying SVD on the output covariance matrix. Instead, a more 

general approach is taken to estimate the extended observability matrix from SVD of the projection of input-output data, and 

then use the extended observability matrix to compute the channel estimate. There has been one attempt to use results from both 

signal subspace methods and SSI methods for blind channel estimation. In (Vandaele and Moonen, 2000), the approach of 

estimating extended observability matrix is taken under the assumption that the channel is FIR, i.e., matrix A in the state-variable 

model (1) has a fixed shifting matrix structure. In wireless communication systems, training sequences are usually placed at the 

mid-amble of data frames. It is fairly clear that SSI is feasible for a continuous stream of data. But it is less clear that a block-

wise sequence of mid-ambles is possible to be used. There are some papers which discuss recursive subspace system 

identification such as (Lovera , 2000).  

 

3. TRAINING SEQUENCE DESIGN FOR SSI-BASED MIMO CHANNEL ESTIMATION 

 Given that the channel can be estimated with the aid of off-line designed training sequences, the question arises as how to 

design optimal training sequences so that the error in the channel estimate can be reduced to the minimum. For an FIR MIMO 

channel with independent subchannels, it is believed that white and zero spatial crosscorrelation training sequences achieve the 

minimum mean square error (MMSE) of the estimates of channel coefficients (Caire and Mitra, 1998; Fragouli , 2003). However, 

for non-FIR MIMO channels, it is not clear that white and uncorrelated sequences are still the optimal choice. In fact, the optimal 

choice of the input for identifying a non-FIR channel should depend on the specific channel (Goodwin and Payne, 1977). 

Consider a general single-input single-output system  

 

yk=H(z)uk+nk      (2) 

 

 where {uk} and {yk} are the input sequence and output sequence, respectively, and {nk} is zero-mean additive white Gaussian 

noise with variance σ 2. H(z) is the transfer function of the channel which can be non-FIR. If the estimator is assumed to be 

efficient, so that the parameter covariance matrix achieves the Cramér-Rao lower bound, then a suitable criterion of optimality 

of the choice of training sequence would be  

 

uo=argminu[-logdet(M)] 

 

subject to the input power constraint 

 
1

𝑁
∑ 𝑢𝑘

2𝑁𝑡
𝑘=1 = 1    (4) 

 

 where Nt is the number of available training symbols, i.e. the length of the training sequence. det(·) represents the 

determinant of a matrix. M is Fisher’s information matrix given by  
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𝑀 = 𝐸𝑌|𝜃{(
𝜕𝑙𝑜𝑔𝑝(𝑌|𝜃)

𝜕𝜃
)𝑇 (

𝜕𝑙𝑜𝑔𝑝(𝑌|𝜃)

𝜕𝜃
)}   (5) 

 

where θ is the vector of parameters in H(z) and σ 2. For the system given in (2), 

 

𝑀 =
1

∑
∑ (

𝜕𝐻(𝑧)

𝜕θ
𝑢𝑘)𝑇(

𝑁𝑡
𝑘=1

𝜕𝐻(𝑧)

𝜕θ
𝑢𝑘) + 𝑀𝑐c                             (6) 

 where Mc is a constant matrix which does not depend upon the choice of the input sequence u={uk}. When the channel is 

FIR and causal, H(z) has the form  

 

𝐻(𝑧) = 𝑏0 + 𝑏1𝑧−1 + 𝑏2𝑧−2 + ⋯ + 𝑏𝐿−1𝑧−(𝐿−1)   (7) 

 

 The cost function (3) is minimized when the training sequence {uk} is white. However, for non-FIR channels (e.g. rational 

transfer function) the choice of optimal training sequence depends on the structure of the channel transfer function and the 

complexity of optimal input design is very high (Goodwin and Payne, 1977). It can be implied from the case of SISO channel 

that the optimal training sequence design for a general MIMO channel would require certain knowledge of the channel. 

Furthermore, for time-varying non-FIR channels the optimal training sequences vary in time as well. This suggests the use of 

iterative and adaptive schemes for the selection of training sequence in broadband MIMO wireless channel, which requires extra 

communication of channel state information from receiver to transmitter and communication of training sequence selection from 

the transmitter to the receiver. In current wireless communication systems, training sequences are normally selected ahead of 

time and stayed fixed during the transmission. It is clear that the complexity of the adaptive schemes is too high to be realistic 

for practical communication systems. Therefore, the formalism of optimal input design is inappropriate for training sequence 

selection. An appropriate choice of training sequences for general MIMO channels seems to be still using white and uncorrelated 

sequences as in MIMO FIR channel. The advantages of white and uncorrelated training sequences are listed as follows. 

 (1) They satisfy the identifiability requirement of subspace system identification. For SSI methods, such as N4SID, the input 

is assumed to be persistently exciting (Van Overschee and De Moor, 1996). It is easy to show that white and uncorrelated 

sequences are persistently exciting of any order. 

 (2) They permit the use of simplified SSI algorithm for computing asymptotically unbiased matrices A, B, C and D. In N4SID 

method, system matrices are computed based on a certain Kalman filter state sequence. The fact that this Kalman filter sequence 

cannot be calculated directly from data increases the complexity of the algorithm for computing asymptotically unbiased system 

matrices. However, if the input sequences are white, it is possible to use another equivalent Kalman filter sequence, which can 

be calculated directly from data, to compute the asymptotically unbiased system matrices, hence simplify the algorithm.  

(3) The performance improvement of optimal training sequence over white &uncorrelated might be small. As shown in (Goodwin 

and Payne, 1977), for a typical SISO channel, the improvement in parameter variances achieved by use of the optimal input 

signal is about 1.49dB compared with the use of the pseudo-random binary signal. This 1.49dB improvement does not seem to 

be worth the effort made to compute the optimal training sequence iteratively. 

  Based on the above advantages, white and uncorrelated training sequences are still the best option for the purpose of general 

frequency-selective fading MIMO channel estimation using SSI methods.  

 

4. SSI FORMULATION FOR NON-CONTIGUOUS DATA STREAMS 

 In practical mobile communication systems, the knowninput data sequences, or training sequences, may not be contiguous 

in the data stream. In GSM, as stated before, they appear as the 26-bit mid-amble of a 156- bit frame. One approach to tackling 

this problem is to treat the equalized data and its received version as "known" input-output data and to use them for SSI channel 

estimation in addition to the known training sequences. This idea is related to semi-blind adaptation where both training 

sequences and information data sequences are exploited to estimate the channel. However, this approach still requires a 

continuous sequence of frames of data, which is not the case for the TDMA-based GSM system where a singe user is assigned 

only a part of the 8 TDMA time slots. In this later circumstance, the state evolution of the received data must be restarted at the 

frame boundaries. This is at variance with the standard formulation of SSI. We next embark on an introductory foray into the 

development of a suitable modification of the SSI algorithms. Consider the evolution of two contiguous Nt-symbollong blocks 

of received data, with the first block commencing at time t and the second commencing immediately thereafter at t +Nt . Then 

we may write the blocked state equations as,  

 

𝑌𝑡,𝑖,𝑗 = 𝛤𝑋𝑡,𝑗 + 𝐻𝑈𝑡,𝑖,𝑗 

𝑌𝑡+𝑁𝑡,𝑖,𝑗 = 𝛤𝑋𝑡+𝑁𝑡,𝑗 + 𝐻𝑈𝑡+𝑁𝑡,𝑖,𝑗 

 

where Γ is the extended observability matrix, H is the system block Toeplitz matrix of Markov parameters, and 
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In standard SSI approaches, these are combined to form a new matrix equation, 

 

𝑌𝑡,𝑖,𝑗+𝑁𝑡
= 𝛤𝑋𝑡,𝑗+𝑁𝑡

+ 𝐻𝑈𝑡,𝑖,𝑗+𝑁𝑡
 

 

 This absorbs the data vectors into the Hankel structure of the new U and Y matrices. This adds further columns to the 

equation to be solved for the observability matrix Γ. Next consider the availability of discontinuous Nt - symbol-long blocks of 

received data with the first block commencing at time t and the second at some later time t +M with M > Nt . Then, we still 

achieve the relationship  

 

𝑌𝑡,𝑖,𝑗 = 𝛤𝑋𝑡,𝑗 + 𝐻𝑈𝑡,𝑖,𝑗 

𝑌𝑡,𝑖,𝑗+𝑁𝑡
= 𝛤𝑋𝑡,𝑗+𝑁𝑡

+ 𝐻𝑈𝑡,𝑖,𝑗+𝑁𝑡
 

 

 but now the absorption of the data into individual Hankel matrices is no longer possible, because of the non-contiguity of 

the received data. We may, however, write an augmented equation composed from the above set.  

 

[𝑌𝑡,𝑖,𝑗  𝑌𝑡+𝑀,𝑖,𝑗] = 𝛤[𝑋𝑡,𝑗 𝑋𝑡,𝑀,𝑗] + 𝐻[𝑈𝑡,𝑖,𝑗  𝑈𝑡+𝑀,𝑖,𝑗] 

 

 This set of equations to be solved for Γ is comparable to the contiguous-data set of equations. It has the same number of 

rows, i, and has i−1 fewer columns. When the length of the training sequence, Nt, is sufficiently large compared to the dimension 

of the generalized observability matrix, Γ (which depends on the state dimension of the model), then the non-contiguousdata 

approach is similar in its estimation power to the contiguous-data approach.  

 

CONCULSION 

 

 In this paper, we suggest to relieve the FIR constraint on the model of MIMO frequency-selective channel to draw benefit 

from possible parsimonious parametrization of the channel, and to use subspace system identification (SSI) methods to tackle 

the channel estimation problem. Also, the selection of training sequences for SSI-based MIMO channel estimation is analyzed. 

The complexity of using optimal training sequences is found intimidating. Because conventional white and uncorrelated 

sequences satisfy the persistent excitation requirement of SSI methods and offer comparable performance to the optimal 

sequences, they are considered still the best choice for general (non-FIR) MIMO channel estimation. Furthermore, a modification 

of the SSI methods and a semi-blind approach are proposed to address the issue that only non-contiguous block-wise training 

sequences are available in practical mobile communication systems. 
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